Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Endolysosomal membrane trafficking complexes drive nutrient-dependent TORC1 signaling to control cell growth in Saccharomyces cerevisiae.

Identifieur interne : 000E90 ( Main/Exploration ); précédent : 000E89; suivant : 000E91

Endolysosomal membrane trafficking complexes drive nutrient-dependent TORC1 signaling to control cell growth in Saccharomyces cerevisiae.

Auteurs : Joanne M. Kingsbury [États-Unis] ; Neelam D. Sen ; Tatsuya Maeda ; Joseph Heitman ; Maria E. Cardenas

Source :

RBID : pubmed:24514902

Descripteurs français

English descriptors

Abstract

The rapamycin-sensitive and endomembrane-associated TORC1 pathway controls cell growth in response to nutrients in eukaryotes. Mutations in class C Vps (Vps-C) complexes are synthetically lethal with tor1 mutations and confer rapamycin hypersensitivity in Saccharomyces cerevisiae, suggesting a role for these complexes in TORC1 signaling. Vps-C complexes are required for vesicular trafficking and fusion and comprise four distinct complexes: HOPS and CORVET and their minor intermediaries (i)-CORVET and i-HOPS. We show that at least one Vps-C complex is required to promote TORC1 activity, with the HOPS complex having the greatest input. The vps-c mutants fail to recover from rapamycin-induced growth arrest and show low levels of TORC1 activity. TORC1 promotes cell growth via Sch9, a p70(S6) kinase ortholog. Constitutively active SCH9 or hyperactive TOR1 alleles restored rapamycin recovery and TORC1 activity of vps-c mutants, supporting a role for the Vps-C complexes upstream of TORC1. The EGO GTPase complex Exit from G0 Complex (EGOC) and its homologous Rag-GTPase complex convey amino acid signals to TORC1 in yeast and mammals, respectively. Expression of the activated EGOC GTPase subunits Gtr1(GTP) and Gtr2(GDP) partially suppressed vps-c mutant rapamycin recovery defects, and this suppression was enhanced by increased amino acid concentrations. Moreover, vps-c mutations disrupted EGOC-TORC1 interactions. TORC1 defects were more severe for vps-c mutants than those observed in EGOC mutants. Taken together, our results support a model in which distinct endolysosomal trafficking Vps-C complexes promote rapamycin-sensitive TORC1 activity via multiple inputs, one of which involves maintenance of amino acid homeostasis that is sensed and transmitted to TORC1 via interactions with EGOC.

DOI: 10.1534/genetics.114.161646
PubMed: 24514902
PubMed Central: PMC3982701


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Endolysosomal membrane trafficking complexes drive nutrient-dependent TORC1 signaling to control cell growth in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Kingsbury, Joanne M" sort="Kingsbury, Joanne M" uniqKey="Kingsbury J" first="Joanne M" last="Kingsbury">Joanne M. Kingsbury</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Sen, Neelam D" sort="Sen, Neelam D" uniqKey="Sen N" first="Neelam D" last="Sen">Neelam D. Sen</name>
</author>
<author>
<name sortKey="Maeda, Tatsuya" sort="Maeda, Tatsuya" uniqKey="Maeda T" first="Tatsuya" last="Maeda">Tatsuya Maeda</name>
</author>
<author>
<name sortKey="Heitman, Joseph" sort="Heitman, Joseph" uniqKey="Heitman J" first="Joseph" last="Heitman">Joseph Heitman</name>
</author>
<author>
<name sortKey="Cardenas, Maria E" sort="Cardenas, Maria E" uniqKey="Cardenas M" first="Maria E" last="Cardenas">Maria E. Cardenas</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24514902</idno>
<idno type="pmid">24514902</idno>
<idno type="doi">10.1534/genetics.114.161646</idno>
<idno type="pmc">PMC3982701</idno>
<idno type="wicri:Area/Main/Corpus">000E96</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E96</idno>
<idno type="wicri:Area/Main/Curation">000E96</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000E96</idno>
<idno type="wicri:Area/Main/Exploration">000E96</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Endolysosomal membrane trafficking complexes drive nutrient-dependent TORC1 signaling to control cell growth in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Kingsbury, Joanne M" sort="Kingsbury, Joanne M" uniqKey="Kingsbury J" first="Joanne M" last="Kingsbury">Joanne M. Kingsbury</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Sen, Neelam D" sort="Sen, Neelam D" uniqKey="Sen N" first="Neelam D" last="Sen">Neelam D. Sen</name>
</author>
<author>
<name sortKey="Maeda, Tatsuya" sort="Maeda, Tatsuya" uniqKey="Maeda T" first="Tatsuya" last="Maeda">Tatsuya Maeda</name>
</author>
<author>
<name sortKey="Heitman, Joseph" sort="Heitman, Joseph" uniqKey="Heitman J" first="Joseph" last="Heitman">Joseph Heitman</name>
</author>
<author>
<name sortKey="Cardenas, Maria E" sort="Cardenas, Maria E" uniqKey="Cardenas M" first="Maria E" last="Cardenas">Maria E. Cardenas</name>
</author>
</analytic>
<series>
<title level="j">Genetics</title>
<idno type="eISSN">1943-2631</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acids (metabolism)</term>
<term>Antifungal Agents (pharmacology)</term>
<term>Cell Proliferation (drug effects)</term>
<term>Mutation (MeSH)</term>
<term>Saccharomyces cerevisiae (cytology)</term>
<term>Saccharomyces cerevisiae (growth & development)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (drug effects)</term>
<term>Sirolimus (pharmacology)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
<term>Vesicular Transport Proteins (genetics)</term>
<term>Vesicular Transport Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides aminés (métabolisme)</term>
<term>Antifongiques (pharmacologie)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Mutation (MeSH)</term>
<term>Prolifération cellulaire (effets des médicaments et des substances chimiques)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines du transport vésiculaire (génétique)</term>
<term>Protéines du transport vésiculaire (métabolisme)</term>
<term>Saccharomyces cerevisiae (croissance et développement)</term>
<term>Saccharomyces cerevisiae (cytologie)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Transduction du signal (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
<term>Vesicular Transport Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amino Acids</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
<term>Vesicular Transport Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antifungal Agents</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Proliferation</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Prolifération cellulaire</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines du transport vésiculaire</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides aminés</term>
<term>Facteurs de transcription</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines du transport vésiculaire</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antifongiques</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Mutation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The rapamycin-sensitive and endomembrane-associated TORC1 pathway controls cell growth in response to nutrients in eukaryotes. Mutations in class C Vps (Vps-C) complexes are synthetically lethal with tor1 mutations and confer rapamycin hypersensitivity in Saccharomyces cerevisiae, suggesting a role for these complexes in TORC1 signaling. Vps-C complexes are required for vesicular trafficking and fusion and comprise four distinct complexes: HOPS and CORVET and their minor intermediaries (i)-CORVET and i-HOPS. We show that at least one Vps-C complex is required to promote TORC1 activity, with the HOPS complex having the greatest input. The vps-c mutants fail to recover from rapamycin-induced growth arrest and show low levels of TORC1 activity. TORC1 promotes cell growth via Sch9, a p70(S6) kinase ortholog. Constitutively active SCH9 or hyperactive TOR1 alleles restored rapamycin recovery and TORC1 activity of vps-c mutants, supporting a role for the Vps-C complexes upstream of TORC1. The EGO GTPase complex Exit from G0 Complex (EGOC) and its homologous Rag-GTPase complex convey amino acid signals to TORC1 in yeast and mammals, respectively. Expression of the activated EGOC GTPase subunits Gtr1(GTP) and Gtr2(GDP) partially suppressed vps-c mutant rapamycin recovery defects, and this suppression was enhanced by increased amino acid concentrations. Moreover, vps-c mutations disrupted EGOC-TORC1 interactions. TORC1 defects were more severe for vps-c mutants than those observed in EGOC mutants. Taken together, our results support a model in which distinct endolysosomal trafficking Vps-C complexes promote rapamycin-sensitive TORC1 activity via multiple inputs, one of which involves maintenance of amino acid homeostasis that is sensed and transmitted to TORC1 via interactions with EGOC.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24514902</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>02</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1943-2631</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>196</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2014</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Genetics</Title>
<ISOAbbreviation>Genetics</ISOAbbreviation>
</Journal>
<ArticleTitle>Endolysosomal membrane trafficking complexes drive nutrient-dependent TORC1 signaling to control cell growth in Saccharomyces cerevisiae.</ArticleTitle>
<Pagination>
<MedlinePgn>1077-89</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1534/genetics.114.161646</ELocationID>
<Abstract>
<AbstractText>The rapamycin-sensitive and endomembrane-associated TORC1 pathway controls cell growth in response to nutrients in eukaryotes. Mutations in class C Vps (Vps-C) complexes are synthetically lethal with tor1 mutations and confer rapamycin hypersensitivity in Saccharomyces cerevisiae, suggesting a role for these complexes in TORC1 signaling. Vps-C complexes are required for vesicular trafficking and fusion and comprise four distinct complexes: HOPS and CORVET and their minor intermediaries (i)-CORVET and i-HOPS. We show that at least one Vps-C complex is required to promote TORC1 activity, with the HOPS complex having the greatest input. The vps-c mutants fail to recover from rapamycin-induced growth arrest and show low levels of TORC1 activity. TORC1 promotes cell growth via Sch9, a p70(S6) kinase ortholog. Constitutively active SCH9 or hyperactive TOR1 alleles restored rapamycin recovery and TORC1 activity of vps-c mutants, supporting a role for the Vps-C complexes upstream of TORC1. The EGO GTPase complex Exit from G0 Complex (EGOC) and its homologous Rag-GTPase complex convey amino acid signals to TORC1 in yeast and mammals, respectively. Expression of the activated EGOC GTPase subunits Gtr1(GTP) and Gtr2(GDP) partially suppressed vps-c mutant rapamycin recovery defects, and this suppression was enhanced by increased amino acid concentrations. Moreover, vps-c mutations disrupted EGOC-TORC1 interactions. TORC1 defects were more severe for vps-c mutants than those observed in EGOC mutants. Taken together, our results support a model in which distinct endolysosomal trafficking Vps-C complexes promote rapamycin-sensitive TORC1 activity via multiple inputs, one of which involves maintenance of amino acid homeostasis that is sensed and transmitted to TORC1 via interactions with EGOC.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kingsbury</LastName>
<ForeName>Joanne M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sen</LastName>
<ForeName>Neelam D</ForeName>
<Initials>ND</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Maeda</LastName>
<ForeName>Tatsuya</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Heitman</LastName>
<ForeName>Joseph</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cardenas</LastName>
<ForeName>Maria E</ForeName>
<Initials>ME</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 CA154499</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>CA154499</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>02</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Genetics</MedlineTA>
<NlmUniqueID>0374636</NlmUniqueID>
<ISSNLinking>0016-6731</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000935">Antifungal Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C561842">TORC1 protein complex, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D033921">Vesicular Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000935" MajorTopicYN="N">Antifungal Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049109" MajorTopicYN="N">Cell Proliferation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D033921" MajorTopicYN="N">Vesicular Transport Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">HOPS</Keyword>
<Keyword MajorTopicYN="N">TORC1</Keyword>
<Keyword MajorTopicYN="N">amino acid homeostasis</Keyword>
<Keyword MajorTopicYN="N">class C Vps complex</Keyword>
<Keyword MajorTopicYN="N">rapamycin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>2</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24514902</ArticleId>
<ArticleId IdType="pii">genetics.114.161646</ArticleId>
<ArticleId IdType="doi">10.1534/genetics.114.161646</ArticleId>
<ArticleId IdType="pmc">PMC3982701</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Eukaryot Cell. 2008 Oct;7(10):1819-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18723607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Mar;1793(3):540-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19100296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 Mar;20(5):1565-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19144819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2009 May 15;437(1-2):32-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19374031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jun 12;284(24):16118-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19386605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2009 Aug;21(4):543-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19577915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Sep 11;35(5):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2010 Mar 1;21(5):833-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20053679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Apr 16;141(2):290-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20381137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2010 Jun;54(6):2618-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20385867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2010 Oct;11(10):1334-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20604902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2010 May 15;9(10):1869-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20436274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 2011 Sep;90(9):779-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21683469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Nov 4;334(6056):678-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22053050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Apr 13;46(1):105-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22424774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Jul 27;47(2):242-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22727621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Dec 13;492(7428):261-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23172144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 May;194(1):285-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23502676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Dec 15;13(24):3271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Sep;156(1):105-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10978279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jun 29;276(26):23849-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11274162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2001 Jul;2(7):476-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11422941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jul 25;418(6896):387-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12140549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Mar;14(3):1204-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12631735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Jun;11(6):1467-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12820961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 16;425(6959):686-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14562095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 9;279(15):14752-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14736892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Oct 15;18(20):2491-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 1974;101(1):45-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4374149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1988 Jun;170(6):2683-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3131304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1988 Jun;170(6):2687-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3131305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1988 Oct;107(4):1369-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3049619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1989 Jul;109(1):93-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2526133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1989 Jul;8(7):2057-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2676511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1990 Apr 25;265(12):6726-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2139027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1992 Dec;3(12):1389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1493335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1994 Dec;10(13):1793-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7747518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1995 Apr 15;11(4):355-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7785336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Dec 1;14(23):5892-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8846782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Feb 1;10(3):279-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8595879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Aug 1;10(15):1904-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 1996 Sep;109 ( Pt 9):2311-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8886981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13780-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8943012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Jan 15;25(2):451-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9016579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Oct 10;272(41):25928-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9325326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jan 30;14(2):115-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9483801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Apr;10(4):987-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Jul;152(3):853-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10388807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1999 Oct;15(14):1541-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10514571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2005 Jan 1;118(Pt 1):7-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15615779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2005 Jul 1;19(1):15-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15989961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Sep 2;280(35):30697-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16002396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Aug;170(4):1539-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15937126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Sep 9;280(36):31582-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16027116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Genet Syst. 2005 Oct;80(5):325-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16394584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2006 Mar;70(1):177-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16524922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 Apr 19;25(8):1579-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16601699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2006 Jul;8(7):657-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16732272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2007 May;12(5):739-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Aug;176(4):2139-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17565946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2008 Apr;11(2):153-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18396450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 May 20;105(20):7194-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18443284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1496-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18497260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2008 Jul;10(7):776-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18552835</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Cardenas, Maria E" sort="Cardenas, Maria E" uniqKey="Cardenas M" first="Maria E" last="Cardenas">Maria E. Cardenas</name>
<name sortKey="Heitman, Joseph" sort="Heitman, Joseph" uniqKey="Heitman J" first="Joseph" last="Heitman">Joseph Heitman</name>
<name sortKey="Maeda, Tatsuya" sort="Maeda, Tatsuya" uniqKey="Maeda T" first="Tatsuya" last="Maeda">Tatsuya Maeda</name>
<name sortKey="Sen, Neelam D" sort="Sen, Neelam D" uniqKey="Sen N" first="Neelam D" last="Sen">Neelam D. Sen</name>
</noCountry>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Kingsbury, Joanne M" sort="Kingsbury, Joanne M" uniqKey="Kingsbury J" first="Joanne M" last="Kingsbury">Joanne M. Kingsbury</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E90 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E90 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24514902
   |texte=   Endolysosomal membrane trafficking complexes drive nutrient-dependent TORC1 signaling to control cell growth in Saccharomyces cerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24514902" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020